AD=AO47 487 CORNELL UNIV ITHACA N Y DEPT OF THEORETICAL AND APP=-ETC F/6 11/&

ULTRASONIC NONDESTRUCTIVE TESTING OF COMPOSITE MATERIALS.(U) "
SEP 77 W SACHSE, Y PAO AFOSR=76=-2992 i
JNCLASSIFIED AFOSR=TR=77-1288 NL

& |
[} T—




ADAO47487

Department of
Theoretical and Applied Mechanics

CORNELL UNIVERSITY
{THACA, NEW YORK

o A T S AN Sl e e

DOC FiLE COPY

AD No.——

,; Approved for publi oaliy:
4 (]
} L distribution ununzt::.l :

B FO S M




i SLCURITY CL AéSIF[(' ATION OF TPC;S—;;A.l;i (When Hnm I~nl:-rv-¢l)
READ INSTRUCTIONS
| REPQRT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 / 1. REPORT NUMBER Y 2. GOVT ACCESSION NO.) ? RECIPIENT’S CATALOG NUMBER
]

\“A 7
J¥ Arosnrﬁ"R 7. T&a\/

| d Subtitl e)

e i ‘
yLTRASONIC NONDESTRUCTIVE }STING OF COMPOSITE C
FfATERIALs

. \7 AUTHOR(I) .8. CONTRACT OR GRANT NUMBER(.)
] / . )
WOLFGANG/ SACHSE :
@YIH—HSING PAO /AFOSR~76-2992 AR
E PERFORM(N ORGANIZATION NAME AND ADDRESS 10. ::gifzkwosn\ksmsr;NPURMOBJEESST T ASK
. CORNELL UNIVERSITY i (/6, G
DEPARTMENT OF THEORETICAL AND APPLIED MECHANICS MJ 1 7, )
ITHACA , N Y 14843 61102F
11. CONTROLLING OFFICE NAME AND ADDRESS 412. ,REPORT DATE
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA kilr Sep 77 @
BLDG 410 . NUWBER OF PAGES , et
BOLLING AIR FORGE BASE, D C 20332 120 /119 0./
14. MONITORING AGENCY NAME & ADDRESS({f different from Controlling Office) 15. SECURITY CL ASS.%Y
UNCLASSIFIED
1Sa. DECL ASSIFICATION/ DOWNGRAD NG
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)
.

18. SUPPLEMENTARY NOTES

LOY L

19. KEY WQRDS (Continue on reverse side if necessary and identify by block number)
NONDESTRUCTIVE TESTING
COMPOSITE MATERIALS

0 ABSTRACT (Continue on reverse side If necessary and identify by block number)

The dispersion of elastic waves (ultrasonic waves) in fiber-reinforced materials
is investigated by experimental and theoretical methods. A dependable continuoud-
wave-phase-comparison technique is developed along with the method of phase
spectrum to determine the dispersion characteristics, and phase and group
velocities in composites. Theoretically, the dispersion relation is determined
from the analysis of multiple scattering of elastic waves with parallel cylinders

¢
foits 1473  EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED Y,




ULTRASONIC NON-DESTRUCTIVE TESTING
OF
COMPOSITE MATERIALS

Final Report
for the
Air Force Office of Scientific Research

—Erant=AF726992- \
AFCSR-T6-RFTIR N

Wolfgang Sachse. Principal Investigator
and
Yih-Hsing Pac, Co-Principal Investigator

Department of Theoretical and Applied Mechanics °
Cornell University, Ithaca, New York - 14853

September 1977

o
g?, Y AN e R e
e ACE O £ CF 8¢ L0 s




[
) 5=

111

Contents

Program Overview
Accomplishments
A. Continuous Wave Technique

B. Broadband Ultrasonic Techniques (Phase Spectrum
Analyzer)

C. Theoretical Studies of Multiple Scattering
Conclusions . '

Appendix A.
Measurement of Ultrasonic Dispersion by Phase
Comparison of Continuous Harmonic Waves

Appendix B.
On the Determination of Phase and Group Velocities
of Dispersive Waves in Solids

Appendix C.
Multiple Scattering of Scalar Waves by Cylinders
of Arbitrary Cross Section

page




[. Program Qverview

This final report contains the first year's results of a project
originally proposed as a three-year research program. The main objec-
tive was the theoretical and experimental investigation of the propagation
and scattering of ultrasonic waves in fiber-reinforced composite materials,
both with and without flaws. The program was supported by AFSOR from
April 1, 1976 to March 31, 1977.

It was recognized at the outset that composite materials present
unique ultrasonic inspection problems. First, there is their inherent
inhomogeneity. For unidirectional fibers the propagation of elastic waves
will be similar to that in anisotropic materials such as single crystals.
Second, there is a characteristic dimension, the filament diameter or
its ply spacing, associated with the microstructural aspects of the com-
posite. For a boron-epoxy composite these are 0.08 mm and 0.20 mm, respec-
tively. Since ultrasonic polses used in most NDT situations contain fre-
quency components in the megahertz range, interrogation pulses wiil con-
tain wavelengths on the order of the material dimension, and the propaga-
tion of ultrasonic pulses through the composite will be greatly affected
by the multiple scattering of waves. The observed dispersion and attenua-
tion of ultrasonic waves in composites is a result of the multiple scat-
tering. Finally, in many cases, particularly when the composite consists
of an epoxy matrix, the ultrasonic signals are highly damped.

The research program completed has focused on each of the above areas,
and we believe that significant progress has been made. The research pro-
gram has benefitted from close interaction between the experimental and
the theoretical work, and from support received from other sources prior
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to the initiation of this program. Experimental techniques utilizing
continuous waves and broadband pulse measurements were developed. Analyses
of the multiple scattering of elastic waves by fibers imebdded in other-
wise homogeneous matrix materials were made. Details are described in
the next section.

During the year, two faculty members (W. Sachse and Y.H. Pao), two
post-doctoral research associates (V.V. Varadan and C.S. Ting) and sev-

eral graduate students worked either part- or full-time on this project.

II. ACCOMPLISHMENTS

(A) The frequency-dependent propagational characteristics of ultra-
sonic waves in various directions of boron-spoxy specimens have been in-
vestigated. Two ultrasonic techniques were developed for the accurate
determination of ultrasonic phase and group velocities in highly absorb-
tive composite materials. Either technique can also be used for the deter-
mination of the dispersion relation for material. Both techniques have been
demonstrated with longitudinal and shear waves of frequencies ranging from
0.5 to about 10 MHz propagating in various directions to the fiber axis.

The continuous-waves technique is an improvement on the existing
method of phase comparison. By transmitting with variable frequency, one
can determine the phase velocity of waves in a composite if the
number of complete sinusoidal waves is known. In this method, a constraint
equation is found which permits the determination of the absolute number
of wave lengths of a wave in a specimen.

This work was presented at the 89th Meetiny of the Acoustical Society
of America at the Pennsylvania State University in June 1977 and a paper

(copy appended) has been submitted for publication to the Journal of the




Acoustical Society of America.

(B) The second technique, ultrasonic phase spectroscopy, measures

the phase spectrum of a broadband ultrasonic pulse. We have shown that
the phase spectrum of a propagating pulse is related to the dispersion
relation of the medium from which the phase and group velocities of the
medium can be calculated as a function of fequency. A digital phase

spectrum analyzer has been set in operation to determine the propagational

characteristics of longitudinal and shear broadband ultrasonic pulses pro-
pagating in boron-epoxy specimens and in other dispersive materials.

This portion of the program was supported in part by the National
Science Foundation through grants to the College of Engineering and the
Materials Science Center at Cornell University. The phase spectroscopy
technique was described in a presentation at the ARPA/AFML Review of Quanti-
tative NDE in June 1977. A paper (copy appended) has been accepted for

publication in the Journal of Applied Physics.

(C) In the theoretical study of the multiple scattering of waves by
fibers in a composite, the newly-developed method of the transition matrix
was extended to the case of multiple scattering of SH waves (scalar waves)
normally incident on cylinders of arbitrary cross section. Using the
transition matrix of a single obstacle, statistical averaging, and Lax's
"quasi-crysstalline" approximation, we developed equations for the average
amplitudes of scattered and excitation fields, from which the dispersion
relation and hence the phase and group velocities for the material are
obtained. In the Rayleigh (low frequency) limit, the effective elastic
properties of the composite agree with the existing results in the literature.

These results were reported in the Compoiste Materials Review, held at

Wright-Patterson AFB in October 1976; and they have been submitted for




publication to the Journal of the Acoustical Society of America (copy

appended) .

Extensions of the above to the scattering situation of either P or SV
waves normally incident on the fibers have also been made. The results
were reported at the "IUTAM Sumposium on Modern Problems in Elastic
Wave Propagation" (Northwester University, Evanstion, I11., Sept. 1977).
Copies of a manuscript containing these results will be sent to AFOSR when

completed.

III. CONCLUSIONS

The propagation and scattering of ultrasonic waves and pulses in
composite materials have been studied. Two experimental techniques have
been developed for accurately determining the dispersive nature of the
propagation of ultrasonic waves in such materials. A theory for the
multiple scattering of elastic waves by thin fibers of arbitrary shape was
formulated. Based on the theory, dispersion relations are found for
the ultrasonic longitudinal and shear waves propagating normal to the

fiber directions.
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MEASUREMENT OF ULTRASONIC DISPERSION BY PHASE COMPARISON
OF CONTINUOUS HARMONIC WAVES

C. S. Ting and Wolfgang Sachse

Department of Theoretical and Applied Mechanics
Cornell University, Ithaca, New York - 14853 1

Abstract

The method of phase comparison of continuous waves is applied to

determine the dispersion relation, phase and group velocities as a
function of frequency of dispersive materials. A combination of the
variable frequency method and the variable path-length method is found
necessary to eliminate any uncertainty in the dispersion relation
determination. Experiments are performed on specimens of various
thicknesses. A constraint equation can be derived since the dispersion
relation is unique and independent of the specimen thickness. Thnis
equation provides a procedure for determining the absolute number of
wavelengths in the specimen. A transducer and electronics compensation
procedure is also used. Measurements in uni-directional, fiber-reinforced

Boron-Epoxy specimens show good agreement with results reported previously.
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We describe in this paper a continuous-wave, through-transmission,
phase comparison method for measuring the phase and group velocities of
ultrasonic waves in dispersive materials. The method is an adaptation
of the phase-comparison methods described by Lynnworth, et al [1] which
have been reviewed by Papadakis [2]. The procedure we shall describe
provides an unambiguous means for determining the exact wavelength of
an ultrasonic wave in a solid specimen. This is then used to find the

dispersion relation, phase and group velocities as a function of frequency

for the material.

I. Introduction

The speed of propagation of a monochromatic wave can be defined as the
speed with which the phase of the wave is propagated [3]. A plane wave,

propagating undamped in the x-direction, can be described at (x,t) as

ulx,t) = uoei(wtikx) (1)

where the quantity (wttkx) is known as the phase function, w(=2nf) is
the circular frequency and k (=27/A) is the wavenumber. Surfaces of

constant phase propagate at speed v where

v = dx/dt = w/k = f\ (2)

v is the phase velocity.

It can be shown [4] that a pulse, being a superposition of waves,

has its mean amplitude propagate with a group velocity given by

U = dw/dk = df/d(1/)) (3)
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When a wave is subjected to frequency-dependent damping, complications
arise in defining its phase and group velocity. These are discussed by

Sachse and Pao [5].

From Equations (2) and (3) one obtains

LA e
U K v + kdk (4)

an equation relating the phase and group velocities. Thus, only when
v # v(k) will the group velocity equal the phase velocity. When the
propagating medium is dispersive, the phase and group velocities are
unequal and both depend on the frequency (wavelength) of the wave Further-

more, pulses change their shape while propagating through such me¢dia.

The measurement of phase and group velocities with continuous waves
and pulse techniques in dispersive materials has been reviewed by Young
[6], Papadakis [2] and recently by Sachse and Pao [5]. This paper is
restricted to a discussion of measurements made with continuous harmonic

waves in dispersive solids.

The phase velocity-frequency behavior and hence the dispersion relation
can be de&ermined from continuous wave measurements only if the wavelengtn
of the wave is known unambiguously. This is usually impossible in solids
unless they are transparent so that the wavelength of a wave can be directly

measured as a function of frequency with optical techniques [7].

In an attempt to measure the wavelength of the wave, Lynnworth, et al

(1] used specimens consisting of two wedges such that the propagation path

length between source and receiving transducer could be varied. The lengin

WA




changes corresponding to a 2m phase change in the received signal relative

to the input signal, should correspond to the wavelength in the specimen.
The difficulty with the technique appears to be associated with anomalous

effects arising from the interface and microstructure of the materials used.

The group velocity can be determined once the dispersion relation
k = E(m) (or w = w(k)) or the frequency dependence of the phase velocity is j
known for the material. If, however, only the group velocity is known as a !

function of frequency, it is impossible to determine v uniquely by integra-

tion of Eqn. (4). Missing is the precise value of k at the lower limit of

integration.

Because a wavelength determination solids is difficult, in a continuous

wave experiment the frequency of excitation is varied and the resonance
frequencies of the specimen determined. Even though the technique has been
in existence for a long time, few measurements in dispersive media can be
found in the literature. One example previously cited, is the work of
Lynnworth, et al [1] who measured the group velocity this way in 3-dimensional

carbon-phenolic specimens.

The measurement technique is sometimes called the wm-phase comparison
technique. In it, a continuous wave of freqnency f is transmitted through
a specimen of length L. Data are obtained by determining the lowest
frequency at which the signal received at L is out-of-phase with the
input signal. This corresponds to a half-wavelength in the specimen, hence
A2 = L. Increasing the fraquency of excitation, the received signal is
successively brought in-phase and w-radians out-of-phase with the input
signal. At each condition the number of cycles of the wave is increased

by one-half and so the number of cycles in the specimen, N, is known at
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every frequency. The process is continued until no signal is detected

at the transducer, being the result of specimen attenuation effects or

transducer bandwidth limitations.

The dispersion relation and the phase velocity are determined at

each frequency f, for which N 1is known. Since

A= L/N (5)

the dispersion relation k or w 1is specified. The phase velocity is

¥= ) =ik (6)

N

In addition, the group velocity, U , is known, since

U= df/d(%) = L df/dN (7)

The crucial point in the wavelength determination is that N 1is known

unambiguously over the entire frequency range. If this is not the case,

the group velocity U <can still be determined as follows. If at frequency

f

if the frequency is then adjusted to f2 where f2 = f] + Af, and at
which another in-phase or out-of-phase condition exists such that
N2 = Nj + AN, then we find

Wa =W
e bt | 2naf
& T KK 2maN (8)

In the 1imit, as k > 0, this equals the group velocity U. Thus,
U = L df/dN (9)

It was pointed out in Ref (5) that it would be possible to determine

7 an in-phase or an out-of-phase condition exists such that N = N1 and

M R S sl sl e -
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the phase velocity from Eqn. (4) by integration, provided that the
2nN

value for k](= L]) which appears in the integration constant is

known. This is in agreement with the discussion earlier.

A unique determination of N, the number of wavelengths in a speci-
ment, is experimentally quite difficult if not impossible in non-transparent
solids. As Papadakis has pointed out [2], at low frequencies spurious
interferences, sidewall reflections and complex modes in a specimen make
it difficult to identify the first out-of-phase condition as well as sub-
sequent in- and out-of-phase conditions. With composite material specimens,
we have observed the mul:imode phenomena to occur below about 0.3 MHz which
appears to be inherent to such materials. The presence of the phenomena
is indicated by several successive in-phase (or out-of-phase) conditions
being observed at irregular frequency intervals.

If the material is non-dispersive in some frequency range, then v = U
ana a group velocity measurement can be used to deternine the wavelength
and hence N at a frequency in that range. If, however, the medium posses-
ses stop-bands [8], the wavelength becomes indeterminate. In the next sec-
tion we describe a method which combines the varijable frequency method
and the variable path-length method to determine the exact number of

cycles, N, in a specimen as a function of frequency.

ITI. Basis of the Method

The measurements on a specimen are begun at any frequency f at which
the input and output signals are in-phase. This condition is assigned any
arbitrary integer value. The excitation frequency is then increased and
the number of cylces of phase, N*, relative to the initial point, recordea
as a function of frequency. It is clear, that in order to obtain the

absolute value of cycles of phase, an integer value of variation, &N, must
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be added to each point.

The number of relative cycles of phase, however, also contains the
effects of frequency-dependent phase shifts caused by the transducers
and amplifiers. This is denoted by n(f) and it must be subtracted from
the N* + SN cycles of relative phase to obtain the absolute number of

cycles of phase in the specimen. Hence
* p
N = N + 8N - n(f) (10)

A. n(f) Determination

If the delay time to resulting from the transducers and amplifiers
is a constant as a function of frequency, then the cycles of phase

shift resulting from these is

) wt
s -2 = o
iRt o ft, (1)

More generally, however, the cycles of phase shift caused by these elements
is also frequency-dependent, hence n(f) must be determined experimentally.
Experience has shown that determination of n(f) is to be preferred over
the use of a second set of transducers which are in intimate contact and
coupled to an amplifier. It is generally very difficult to obtain two

sets of ultrasonic transducers whose frequency-dependent phase shifts are
identical.

The determination of n(f) can be accomplished in two ways. In one,
the transducers are placed in intimate contact and the function n(f) is
determined directly from the cycles of phase shift, n*, measured between
input and output transducers as a function of frequency. Alternately, a
non-dispersive highly-attenuating specimen is used in the phase-compari-

son system. This facilitates measurements to be reliably made to the




lowest out-of-phase frequency. From Eqn. (5)

If the phase velocity of the non-dispersive material is Vo then the

aispersion relation is

1 2m
k = (—w = =f (12)
Vo Yo
Combining these equations, one finds
‘ L
N o= = f (13)
Yo
Therefore, the non-specimen phase shift is determined from ?
X 2 il
n(f) = n(f) - —f (14)
Yo

and this must be subtracted from the measured cycles of relative phase
shift.
B. &N Determination

The value of &N can be determined by performing phase-comparison .
measurements on specimens of various lengths. Since the wavenumber is
directly related to the number of cycles of phase in a specimen according
to Eqn. (5), then, if a set of m specimens of length Li is tested and

*
for each, Ni(f) is measured, the following set of m equations result

o ERrY
ki(f) = [;{Ni(f)+6Ni-n(f)] (15)

The dispersion relation, w = w(k), is unique for the material and independent

1
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of specimen Tength. It follows, therefore, that at any frequency f

f) = k3(f) o e @ km(f) (16)

or

2npy* o 2mpa* 5 5 _ 2mpy* F
IT{Nl(f)+6N1'"(f)] EE{NZ(f)+6N2 n(fi] = ... E;{Nm(f)+6Nm n(f)] (17)
Equations (17) are quivalent to a set of (m-1) 1linearly independent

equations for the m unknowns, GN], 6N2, SN st. An additional

3 e
condition is that the éNi are to be integer values. Hence, the de
can all be uniquely determined.

Eqns. (17) can be rewritten in the form

B
= —1- 1 =
6Ni L] GN1 + Bi =0 23 s (18)
where
* * 5
Bi = {LiN](f)-L]Ni(f)-(Li-L])n(f)}

For GNi to be independent of frequency, requires that Bi be also. The
requirement that the GNi values be exact integers is generally not attain-
able from experimental measurements. The requirement is therefore relaxed
such that the 6Ni be close to integer values. Thus, in practice, one
finds the set of P which satisfy Eqn. (18) and whose summed deviation

of each GNi to its nearest integer is a minimum.

The solutions obtained,depend clearly on the various specimen lengths
chosen. In order to obtain a solution without ambiguity, one must chose
specimen lengths which preclude multiple solutions.

An extreme case is that in which all the specimens are of equal length.

In that case, Bi =0 and aNi cannot be determined uniquely. The optimal

W“'—“ P
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choice of specimen lengths to be used in a series of experiments is not
immediately apparent. If the thickness ratios between specimens is
]:%ﬁ%ﬁ%ﬁ ..., the common denominator is as large as possible. If five
specimens are considered, with Li =1, and if at a value of SN] the
other 6N; are all integer values, only when SN, is equal to 60 will all
the other GNi equal integer values again. It is clear that a judicious
choice of specimen thickness ratios should be used if the dispersion rela-
tion for the material is to be determined unambiguously.

Although the number of specimens is at minimum two, a larger number

of specimens greatly simplifies the 6N] determination.

IITI. Experiments

The electronic system for making ultrasonic phase-comparison measure-
ments is shown in Figure 1. It is similar to that described by Papadakis
[2] and consists essentially of a continuous radio-frequency oscillator
(HP 606A), a frequency counter (HP5326B), transducers (Panametrics VIP-
Series), specimen holder, amplifiers and display oscilloscope (Tektronix
7A18, 7704A). Both input and received signals are displayed on the oscil-
loscope. The signals were amplified to the same level and added. A null
signal was used to indicate an out-of-phase condition. The in-phase condi-
tion was determined similarly with one of the signals inverted. A vector
voltmeter can also be connected to input and receiving transducers and
the phase measured directly.

The determination of the tranducer and electronic phase delay, n(f),
was determined by the two methods described in Section II. The results are
shown in Figure 2. The data points indicated by Method (I) are the results

obtained when the two transducers were in intimate contact and the phase

ot Ul b e
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of the received signal was measured relative to the excitation signal as

a function of frequency. The line indicated on Figure 2 passes through the

points determined from the data of a 1.27 cm thick specimen of plexiglass

placed between the transducers with the data being reauced according

to the procedure described in Section II. The measurements were repeated

with a 1.27 cm thick specimen of brass. The results were identical. 3
To demonstrate the applicability of the data analysis procedure,

phase-comparison measurements were made on specimens cut form a 96-ply

"Scotchply" uni-directional, boron-epoxy composite panel. The specimen

material is the same as that used in some earlier elastic moduli experi-

ments and the characteristics of the material have been reported previ-

ously [9]. Shear waves were used in the experiments to be described.

The wave propagation direction was coincident with the fiber direction

and the particie polarization direction was perpendicular to the ply layers

of the composite.

Five specimens of the same orientation, but possessing different
thicknesses were used. The original data obtained from phase-comparison
measurements is shown in Figure 3. The number of cycles of phase, N*,
indicated on the ordinate is measured relative to a particular in-phase,
out-of-phase condition. The values of Bi in Eqn. (18) were evaluated
at five frequencies: 2, 3, 4, 5, and 6 MHz. The values of Ni at each
frequency were obtained by a linear interpolation of the two adjacent
data points. With the values of n(f), it was found that the variation
of Bi at these five frequencies is less than 0.07 cycle of phase delay.

Using the averaged values of Bi and the length ratios, Li/L], Eqn. (18)

is used to evaluate the various N, (i >1) 1in terms of the SN, - One
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finds
8N, = 0.911 6N

+ 0.563 (+0.035)

1

6N3 = 0.310 GN] + 0.398 (+0.021)

(19)

8N, = 0.501 6N, + 0.955 (+£0.023)

1

SN = 1.466 SNy + 0.820 (+0.034)

This set of equations is plotted in Figure 4.

As stated in Section II, in order to determine the appropriate value
for the 6N1, the sum of the deviation of each GNi(i > 1) from its nearest
integer value must be a minimum. This can be done numerically using Egns.
(19) or it can be determined directly from Figure 4 with a calibrated
scale. The deviations of each GNi (i>1) from its nearest integer value
are summed for every integer value of GN] and this total deviation is
plotted versus SN] as shown in Figure 5. It is clear that for le =2
the total deviation is a minimum. It follows then that 6N2 = 6N3 =1,
6N4 =2 and GN5 = 4 for the example considered.

Once the GNi have been determined, the dispersion relation for the

material is established according to Eqn. (15). This is shown in Figure

6 with all the original data (Fig. 2) now fitting onto one continuous curve.

The phase velocity, v(=2nf/k) 1is determined directly from the disper-
sion curve. The result for the 0.543 cm thick specimen is shown in Figure
7. The group velocity is determined by differentiating the dispersion
curve. In order that artificats arising from numerical differentiation
of the discrete points of the dispersion curve be minimized, a polynomial
is fit to the dispersion data. In the present experiments, a cubic poly-

nomial of f as a function of k was used with the resulting polynomial
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coefficients given in Table I. The group velocity is then determined as

a function of frequency in closed form from the dispersion curve polynomial.

As a check of this procedure, the data points comprising the dispersion
relation were analyzed point-by-point with a four-point Lagrangian
interpolation technique [10] to determine the group velocity. The results
of both group velocity determinations for the 0.543 cm thick specimen are
also shown in Figure 7.

The phase and group velocity determinations made on all five speci-
mens is compared in Figure 8. The phase velocity results are nearly
identical while the group velocity results show a slightly large scatter.
For comparison, the results of Tauchert and Guzelsu [11] who used an r.f.
burst measurement technique to determine the time delay of the burst and
so its group velocity through specimens of similar material. Although
their measurements were made with different transucers at frequencies of
0.5, 2.25, 5.0 and 10 MHz, the line shown on Figure 8 is drawn through all
their data points. The agreement with the results of continuous wave

measurements is within 8%.

IV. Conclusions

By combining the variable frequency and the variable path length
continuous wave techniques, we have shown that the dispersion relation
for a material can be determined from w-phase comparison measurements.

The procedure utilizes phase data relative to an arbitrary starting
frequency which has been modified to take into account the phase delays
associated with the transducers and electronics. Since the dispersion
relation for a material is unique and the number of cycles must be an

integer number, it is shown that the number of cycles at the test start

s sirasiatinn
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can be established and so the dispersion relation for the material
is found to which a polynomial can be fitted. Both phase and group veloci-
ties can then be determined from the dispersion relation point-by-point
numerically or in closed form by differentiation of the polynomial.

The results obtained are consistent from specimen to specimen, regard-
less of length. Furthermore, the group velocity determination is in agree-

ment with that obtained with a r.f. burst technique.
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Table I - Dispersion relation polynomial coefficients
2 3
a0 + a1k + a2k + a3k
a a a
. 1 2 3
Specimen (x 10-1)  (x 10°3) (x10-6)
i=1
(0.335 cm) 0.1301 0.3632 -0.6759
i=2
(0.543 cm) 0.1527 0.3522 -0.6160
=3
(0.878 cm) 0.1270 0.3788 -0.7136
i=4
(1.753 cm) 0.1530 0.3438 -0.5604
i=5
(2.569 cm) 0.1569 0.3362 -0.5509

-A-16 -




Figure Captians

Figure 1

Figure 2

E Figure 4

Figure 5
Figure 6

Figure 7

Figure 8

Figure 3.

Schematic of the experimental setup.

Measured transducer and electronics phase delay. Method I:
Transducers in contact; Method II: Measured using a
plexiglass sample.

Original phase delay data obtained from shear waves in
Boron-Epoxy, propagating along the fiber direction, with
polarization normal to the ply layers. N* is the cycles
of phase relative to any first in-phase, out-of-phase
condition.

Phase shift of the specimens i = 2,3,4,5 for various phase
shift values of specimen i = 1, based on the data shown in
Figure 3.

Summed phase shift obtained from Fig. 4 for various values of
the phase shift for the data of specimen i = 1.

The dispersion relation derived from the data shown in
Figure 3.

The corrected dispersion relation data for the 0.543 cm thick
specimen. Also shown is the polynomial curve fit and the
derived phase and group velocity. Open circles represent the
group velocity determined with the four-point Lagrangian
interpolation technique.

Phase and group velocities obtained from all the data shown in

Figure 3. Comparison is made with the results obtained from
r.f. burst measurements by Tauchert and Guzelsu (Ref. 11).
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ON THE DETERMINATION OF PHASE AND GROUP VELOCITIES

OF DISPERSIVE WAVES IN SOLIDS

Wolfgang Sachse and Yih-Hsing Pao
Department of Theoretical and Applied Mechanics
Cornell University, Ithaca, N.Y. 14853

ABSTRACT

A new technique is developed to determine the dispersion relation
and the propagational speeds of waves in dispersive solids. The phase
spectrum of a broadband pulse is linearly related to the dispersion
relation of the dispersive medium. The method is simpler than the con-
tinuous wave-phase comparison technique. Application is made to mea-
sure the phase and group velocities of waves in fiber-reinforced com-
posite materials and in thin wires. This technique is expected to be
applicable to measurements of acoustic or electromagnetic wave speeds in

other dispersive media.
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I.  INTRODUCTION

The velocity of a wave is usually associated with the phase difference
between the vibrations observed at two different points during the passage
of the wave. A plane harmonic wave of amplitude A, angular frequency w
(= 2nf) and wavelength A(= 2w/k), propagating in a non-attenuating medium
may be represented by A cos(wt - kx+&) = A cosw(t - kx/wte) where E=we
is a constant. The phase of the wave is then defined by the argument of the
cosine function and the wave velocity is v = w/k, which is usually called

the phase velocity.

When the phase velocity v of a plane harmonic wave is a function of
its frequency or wavelength, then the propagating medium, according to
Havelock [1], is dispersive. Such dispersicn may be caused by: (i) the
presence of specimen boundaries (geometric dispersion), (ii) the frequency
dependence of material constants, such as mass density, elastic moduli,
dielectric constants, etc. (material dispersion), (iii) the scattering of
waves by densely distributed, fine inhomogeneities in a material (scattering
dispersion), (iv) the absorption or dissipation of wave energy into heat, or
other forms of energy in an irreversible process (dissipative dispersion), and
(v) the dependence of the wave speed on the wave amplitude (non-linear
dispersion). We shall omit the last-mentioned source of dispersion in the
analysis to be presented. The theory of the propagation of pulses in
dispersive media is well known [1-3]. The principal feature is that the
pulse does not retain its initial shape as it propagates through the disparsive
medium. Thus, a short duration pulse may be dispersed into wave trains in

time.
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Measurements of the phase versus frequency of continuous waves in

dispersive media determines the group velocity of the wave. By definition,

the group velocity U equals dw/dk = v + k dv/dk. From the data of U

versus w, it seems that one could evaluate v as a function of k by

integrating the preceeding equation. However, in order to complete the

integration, it would require precise values of w and k at the Tower

1imit of integrations and these could not be easily obtained experimentally.
For unidirectional waves in a solid, the dispersion characteristics

are similar to those of the propagation of electromagnetic signals in

transmission lines, or those of ultrasonic signals in delay lines. The former

is disscu:sed in many standard texts [4] and the latter was addressed by Young [5].

Young cleirly defined the concept of "phase delay" of continuous waves, and
"group delay" of a narrow bandwidth pulse, and he showed that the latter

is related io the derivatives of the phase characteristics of the pulse

with respe:t to frequency. From the "group delay," the group velocity of

a pulse can be determined. However, Young [5] considered only waves without

attenuation, and pulses with narrow bandwidth.

Previous experimental work in solids has dealt with both continuous-
waves and pulses. As mentioned above, the phase velocity may be frequency-
dependent. Thus errors in its determination are minimized by using mono-
chromatic waves. In the so-called w-point phase comparison technique, which
appears to have been first used by Balamuth [6] and is recently
reviewed by Papadakis [7], the half-wavelength of the wave is determined
directly by varying the propagation distance between source and receiver and
observing the corresponding m-phase change of the received signal. Although
such measurements are easily carried out in gaseous and fluid media, this is

not the case in solids.




o

The main difficulty of the m-point phase technique is that the phase
must be measured to a frequency low enough so that the phases between the
transmitted and received signals differ exactly by m, or a known multiple
of m [7]. To overcome this difficulty, Lynnworth et al. [8] used a sliding
wedge technique to vary the propagation length in 3-dimensional carbon-
phenolic composite specimens to determine the wavelength and hence the phase
velocity directly. Unfortunately, the wedge interface and the pronounced
material microstructure can give rise to anomalous effects. Other researchers
used specimens of fixed thickness and varied the frequency of excitation.

The group velocity is thus determined as a function of frequency, as will

be discussed in more detail in Section II. Recently, however, Ting and
Sachse [9] have combined the variable frequency method and the variable path-
length method. They developed a constraint equation from which the number of

wavelengths in a specimen can be established unambiguously.

Pulse measurements of the dispersion have been made with broadband
pulses as well as narrowband bursts. In a broadband pulse technique, the
frequency dependent reflection coefficient of a pulse from a buffer-specimen
interface is measured, from this, the frequency-dependent phase velocity
of the specimen inferred. The technique has been applied to phase velocity
measurements in teflon [8] and boron-epoxy specimens [10]. There is serious
question, however, whether the measured phase velocity is that which charac-
terizes the bulk material, rather than the interfacial layer at the buffer

and specimen interface.

In burst measurements, one measures the delay of 3 burst with a
certain center frequency through the thickness of a specimen. Tauchert [11],

utilizing pairs of transducers with differing center frequencies measured the
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group velocity in this way in boron-epcxy composite materials. Using a single
pair of broadband transducers and varying the frequency of the electrical
excitation burst, Sutherland and Lingle [12] measured dispersive effects in
boron-aluminum specimens. With burst
delay measurements in very dispersive materials, it is possible to
unambiguously identify equivalent points in the undelayed burst and the
specimen-delayed burst therefore, it is not clear what wavespeed is actu-
ally measured [7]. Furthermore, as emphasized by Young [5], the envelope
of a received signal may differ considerably from the input signal and this
makes it difficult to determine its delay-time through a specimen. This
problem can be minimized by amplitude modulating the r.f. carrier with a
particular, smooth envelope such as a Gaussian contour [5].

Other examples of elastic wave dispersion measurements are those with
a shock tube technique by Whittier and Peck [13],in carbon-phenolic composites;
by Yew and Yogi [14]sin steel-epoxy specimens with an optical interferometry
technique; and by Kaarsberg [15] in geological materials with ultrasonic

techniques.

Our investigation was motivated primarily by the determination of wave
speeds in eutectic and fiber-reinforced composite materials, and porous solids.
In Section III of this paper we review the principles of the m-point phase
comparison method and its limitations in uniquely determining the dispersion

relation of a material.

In Section IV, we propose a different technique - based on the phase
spectral analysis of a broadband pulse - for the determination of phase and
group velocities of waves in dispersive media. In this technique, the

phase function of a Fourier-analyzed pulse is evaluated. It is shown how




the phase and group velocities as well as the dispersion relation for the
material can be determined directly from it. The experimental technique
and its implementation are described in Section V. In Section VI we show
the results obtained with this technique to characterize dispersive and
non-dispersive materials and to compare them with the results obtained with
the continuous wave, m-point phase comparison technique.

Although the examples we cite in this paper are limited to ultrasonic
stress waves and pulses propagating in dispersive solids, the principle and
the experimental technique described in Sections III and IV are perfectly
general, such that similar observations can be made with Tinear acoustic,
electro-magnetic, or optical waves propagating in dispersive media. A
general discussion of the dispersion of waves and the concept of group

velocity can be found in Refs. [16 ] and [17].

II. DISPERSION OF A LINEAR, CAUSAL SYSTEM

A solid specimen sustaining the propagation of a plane wave along a
length or thickness dimension, comprises a one-dimensional, linear system.

Such systems admit plane wave solutions of the form:
u(x,t) = Aeiw(t-tx/v-g) = Ae.i (wttkx-€) (1)

As notea earlier, the phase velocity v(= w/k) 1is a constant for non-
dispersive media. More generally, v is a function of w. Also, in
real systems, the wave amplitude gradually attenuates through beam

spreading, scattering, mode conversion, coupling losses between transducer

e
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and specimen and the absorption and dissipation of energy in the specimen
material. As long as the total energy is conserved, w must be real and
the attenuation of the wave amplitude can be accounted for by letting k

be complex. That is
k=8 +ia (2)

For waves propagating in the direction of +x, Eq. (1) is then written as

U(X,t) i Ae-axe‘i (wttex-wi) (3)

In general, both « and g8 1in Egs. (2) and (3) are functions of w.
Although the function in (3) is not periodic, we can still define a

phase velocity v, and group velocity U of the wave as

dw

Cmeg T Ee e (4)

The wave length of the decaying sinusoidal wave is 2n/8, and a is the
attenuation factors. We caution that the group velocity U as customarily
defined only has physical significance when a(w) is small [16]. By small
a(w) we mean that the ‘attenuation in nepers for one wave length is small.

The dispersive property of a physical system is characterized by
specifying the o and 8 as functions of «. For a causal system, in
which the response of the system to a driving force cannot precede the
first arrival of the signal generated by the driving force, the afw) and
8(w) are related by Kramers-Kronig relation. Mathematically, for a causal
system, the «(w) 1is related to the Hilbert transform of g(w), and
vice versa [3]. Thus we shall regard that o(w) can be calculated from
8(w), and the dispersion property of the linear causal system is defined

by the relation
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8=8w, or ws=uag) (5)

In €q. (5), B(w) 1is a real function of the real variable w, and w(B)
is the inverse function of B(w). The objective of the experiments is to

determine the dispersion relation, Eq. (5), for a solid medium, and then to

calculate v(w) and U(w) from Eq. (4); or to measure either v or U and

then determine the dispersion relation, Eq. (5).

If there exists a dissipative mechanism in the system, the frequency
w may also be complex valued. Cne example is the thermoelastic wave in
solids [18, 19]. In such a case, there are two choices: one is to
restrict the answer to real w but complex k, the other is to limit the
answer to real k but complex w. The corresponding phase velocities are
defined respectively as v = w/Re(k) and v = Re(w)/k, and the two results
do not always agree. The meaning of group velocity also becomes uncertain.
The situation is further complicated by possible anisotropy in the material.
The concept of phase and group velocity for waves in a dissipative and

anisotropic medium has been discussed in Ref. [19].

IIT. THE METHOD OF m-POINT PHASE COMPARISON

By transmitting continuous waves of varying frequencies through a
specimen of length L, a phase versus frequency relation can be measured
for the specimen. By adjusting the frequency to, say, f], the signal at
the receiver is first brought into in-phase or m-radians out-of-phase
with that from the transmitter. At this frequency, let the wavelength
be A1,and the number of complete sine waves by Ny thus f] = v]NI/L where Vi
is the phase velocity. An increment of the phase by a known multiple of

m radians is made by changing the frequency to f2 with N2 number of sine

waves of length Ays and f2 = v2N2/L.
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For nondispersive waves, Vi =V, T V. By setting N2 = N1 +1 in
the experiment [7], we find

In this situation, it is not necessary to know the exact value of N] at

the starting point.

For dispersive media, vq differs from Vs because of the change of
frequency, and so one cannot determine either, unless N1 is known exactly.
However, as illustrated by the hypothetical experimental data shown in Fig.
1,1t is still possible to determine the group velocity U by measureing
fj(J = 1,2,3,...) and N, where Ny, =N+ 1. This follows from the

following relations:

. £ df L
s RSy er 2 ow e (7)
il N dn/df

In this case, U is only determined in a range of frequencies higher than f].

Once U(N) is determined for a range of N > N], the phase velocity
can be calculated by the following integration
N

U(N)dN + e (8)
N

Yy =

.
N

Thus, we are facing an uncertainty unless the value for N] is known. This

can easily be seen from Fig. 1, in which the location of N] is uncertain. The

slope of the tangent to the curve f vs. N which is related to the group velocity
] ' can be calculated for N > Ny but the slope of the secant (a line from the origin

to a point on the curve) cannot be determined. The slope of the secant is

E | precisely v/L.

FoNes PPN
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IV. THE METHOD OF PHASE SPECTRAL ANALYSIS

Fourier Synthesis of the Transmitted Pulse

It was mentioned that a linear system admits plane harmonic waves des-

cribed by Eq. (1), and if attenuation exists, by Eq. (3). Based on the

principle of superposition, a pulse u(x,t) propagating in the linear
medium x > 0 may be expressed as an addition of all plane harmonic waves,
u(it) = o £ odo £ ACg)eele(EN/ Vel (9) |

L] -C0

where A(g) is an unspecified amplitude -function, and both v and a are functions of w.

Assuming that the medium is at rest initially, and a disturbance F(t) is

generated at the location x = 0, for t > 0, that is
u(@,t} = F(t) (10)

Then, from Eq. (9), we find

T ode £ AGg)ete(tE) g (1)

-0 -0

F(t) = o

This expression is exactly the Fourier integral representation of the input time

function F(t). Hence A(:Z) = F(£), ana the amplitudes of the superposed plane

waves are fixed by the end condition at x = 0. We thus write Eq. (9) as

u(x,t) = f‘; I e ! F(g)e‘“xe‘“(t'x""“:)ds : (12)

If « and v are constant, we find from Eq. (12) and the theorem of

Fourier integral the well-known result

u(x,t) = F(t-x/v)e X (13)

The input pulse F(t) at x = 0 propagates through the non-dispersive medium

without, a change of shape, except for an exponential decrease in amplitude.
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When both a and v are functions of w, the double integral in
Eq . (12) gives rise to the dispersed pulse at any location. To determine
the signal at x = L in a specimen, we evaluate first the integration with
respect to &,

-]

u(L,t) = %T-( Flw)e obeiwlt-L/v)y, (1k)

-0l
where

Flo) = { F(g)e™™ag (25)

Note that F(w) is the Fourier transform of the input F(t) which is

supposed to be known. Since B = w/v, Eq. (14) can be rewritten as

-]

u(L,t) = %; J [Flu)e Le-1Blyeiuty, (16)

-00

The exact shape u(L,t) can be calculated from the above integral if
the dispersion relation (Eq- 5 ) is known, but the calculation will be in
general be very difficult. However, the spectrum of the transmitted pulse at
x =L 1is given by the Fourier transform of u(L,t), which is precisely

the quantity inside the brackets of Eq. (16),
u(L,w) = ?(w)e'a"e"el' (17)

In general, the Fourier transform of a causal time function F(t) may be
complex. Thus

= - -iwé = ’wo

Flw) = [F(w)]e = |F(w)|e (18)
where % © wE. Eg. (17) can then be written as

u(L,w) = IFKw)e'aLle'i(BL+m£) (19)

This means that the phase spectrum of u(L,t) is given by
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o(w) = BL + ¢, = L8(w) * éo;

It is seen from Eq . (20) that the phase spectrum of the transmitted pulse is

lTinearly related to the dispersion relation g(w) of the meidum.

Phase Spectra and Dispersion Relations

In the next section, we show experimentally that an accurate spectrum
of the transmitted pulse u(L,t) can be determined by digital analysis.
The spectrum is composed of two parts: the amplitude spectrum and the phase
spectrum. The latter is precisely the ¢(w) of Eq. (20). Thus, the
dispersion relation of a medium is determined uniquely by the phase spectrum

of a propagating pulse,
3(w) = ¢ [o(w)-g,] (21)

The phase velocity is Obtainable from the experimental

data,
=9 _ b
v(w) = 3 ETBT:E; (22)
By differentiating the phase function, we obtain
.ﬂ—)—d w) - .dé = L Z = L 7
dw CdtiTHETETUTTE (23)

The group velocity U can then be calculated from the derivatives of the

phase spectrum
U=L@-g (24)

When w 1is complex-valued, as in a dissipative medium, the Fourier
synthesis in Eq. ( 9) is meaningless unless the path of integration for the
complex variable w 1is specified. An alternative would be to assume k

real valued and to write

u(x,t) =_l,—4[ dk [.A(C)eik(‘f.t'xf)dc el
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The ¢ 1is a phase constant in the space-axis, and v = w/k must be
complex valued for a medium with damping. As shown by Havelock [1], an
integral representation such as Eq. (25) is suitable for analyzing initial
value problems (u is given at t = 0). For waves in a medium without

dissipation, these two representations (Eqs. 9 and 25) are equivalent.

A Simple Example

TR e

That the phase spectrum of a propagating pulse is related to the group
velocity may be illustrated by the following simple example. Consider a

square pulse of duration ZTO generated at x = 0,
u(0,t) = u, 0<t<2l (26)

and u(0,t) =0 for t<O0, and for t > ZTo’ At time t =T, the pulse
travels through a non-dispersive and non-attenuating medium a distance L.

Since the pulse shape is preserved (Eq. 13), the disturbance at x =L s
u(L,t) = Uy T<t<THT, (27)

and u(L,t) =0 for t<T and t > T+2T°. The Fourier transform of u(0,t)

and u(L,t) are respectively

s1an° -1wT°

u(O0,w) = 2To “To e (28)
B sinaT,  =1w(T+T))
u(L,w) = 2T - (29)

(o}

The phase spectrum of u(L,w) and its derivative are

olu) = w(THT),  do/du =TT, (30)
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Comparing Eq. (29) with Eq. (19) with o = 0, Eq. (30) with Eq. (23),
we identify ¢ = To and find T = L/U. This last result states that
the square pulse traverses the distance L with the group velocity U

which, in this case, is also equal to the phase velocity.

V. EXPERIMEMTS AND DIGITAL SPECTRAL ANALYSIS

The two methods described in the previous sections were implemented to measure
the dispersion relation and phase and group velocities for non-dispersive and
dispersive materials. The experimental set-up for the continuous wave
m-point phase difference measurements is similar to that in Ref. 7 (Fig.

22). The block diagram for the equipment used in the pulse transmission
experiments is shown in Fig. 2. Two nearly identical broadband

transducers were used in both experiments.

In the continuous wave experiments, the source transducer was excited
with a 10 volt peak-to-peak harmonic wave ranging in frequency from 50 kHz
to 20 MHz. The signals from the receiver transducer were amplified and
displayed on an oscilloscope. The amplitude and phase measurements of the
continuous waves were made directly from the oscilloscope, and with a

vector voltmeter for frequencies above 1 MHz.

In the pulse experiments, the source transducer was excited with a
-250 volt pulse of 35 nsec duration. A sampling oscilloscope was used to
overcome the bandwidth limitation of the A/D converter attached to a mini-
computer. Any selected portion of a time record could be sampled by means
of a digital delay unit used in conjunction with the sampling plug-in unit

of the oscilloscope.

S A—
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A Fast-Fourier transform algorithm was used to compute the Fourier
amplitudes of the input time function F(t). The actual time record is
associated with 1024 time domain data points which were padded with 1024

zeroes. The real and imaginary parts of the Fourier transform, F](w)

and ?z(w), respetively, were first calculated. The absolute value of

the transform is given by |[F(u)| = [F](w)Fz(m)]llz, and the phase func-
l tion by ¢(w) = tan'][?z(w)/?](w)]-

The computer algorithm 1imits the values of ¢ in the reduced range from

m to -w. Thus,discontinuities of m for the phase spectra were found

whenever the magnitude of ¢(w) becomes less than or greater than zero and
2m. This was corrected for by adding or subtracting the amount of jump to
render the phase spectrum continuous. The resultant data was then used to
compute the wavenumber, phase velocity and group velocity associated with %

the pulses u(0,t) and u(L,t) according to Eqs. (21), (22) and (24).

To initialize the pulse analysis system and thus set ¢0, the source

transducer was placed in intimate contact with the receiving transducer and i

the maximum of the received excitation pulse was made to coincide with the
start of the sampled time record by means of the vernier-controlled digital
delay unit. In this way ¢, Was set equal to 0. Alternatively, the phase
spectrum of the received excitation pulse could be computed and stored in J
the data analysis system. This spectrum is exactly 9% and it could be

subtracted from all subsequent phase spectra calculations.
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The sampled sweep was digitally delayed in steps of 100 nsec until
the pulse to be analyzed was disﬁlayed on the sampling oscilloscope. The
time shift, Tes in increments of 100 nsec, relative to = 0.0 was
read into the computer as was the propagation distance, L. Equations
(21), (22) and (24) for the dispersion relation, phase and group velocity,
respectively were modified to include the time shift factor. They are,

in terms of frequency f,

B(F) =L7'[e, - 6(f)] + 2nfr . (1)
B 2mflL

V(f) 5 (¢o E ¢(f§] + ZﬂfTs (32)

U(f) = 2nL/ (dg/df-< ) (33)

The operation of the system was checked by entering a simulated square pulse,

and the phase spectrum ¢(w) was indeed a straight line as given by Eq. (30).

VI. EXPERIMENTAL RESULTS

To experiment with waves in a non-dispersive medium, a broadband
longitudinal ultrasonic pulse, comprised mainly of frequency components
from 3 to 12 MHz was propagated through a 1.900 cm thick specimen of 6061-T6
aluminum. In Figure 3(a) is shown the excitation pulse u(0,t) and in
Fig. 3(b) the first received pulse wu(L,t) at L =1.900 cm. In Figures
3(c) and 3(d) are shown the Fourier amplitude spectrum and phase spectrum
of u(L,t). Fig. 3(d) also yields the dispersion relation as B = ¢/L

(Eq. 21 ). The calculated phase velocity and group velocity of this specimen

st e e e o
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are shown in Figs. 3(e) and 3(f). It is clear from Fig. 3(d) that there
is Tittle dispersion in this material in the frequency range from 0 to 20
MHz.

The gircular dots shown in Figure 3(f) represent the group
velocity values determined from the data weasured by
the continuous-wave, m-phase technique (Eq. 7). For this specimen, no
measurements were possible below 1.5 MHz because transducer near-field
effects dominated the observations. At frequencies above 7 MHz, data
were recorded only at integer frequency points. The average group velocity

measured using the continuous-wave technique was 0.618 + 0.009 cm/usec.

The results for a dispersive medium such as composite materials are
shown in Figure 4. A broadband shear pulse is propagated through a 6.546
cm thick specimen of 96-ply Boron-Epoxy. In this case, the wave propagates
in the direction of the fiber and the particle displacement
direction is perpendicular to the fiber and parallel to the ply layers.
Figs. 4(a) and 4(b) show the initial pulse and the dispersed pulse, respectively,
detected at the receiving transducer. It is apparent that the high frequency
components of the pulse propagate faster than the low frequency compohénts.
The relative amplitudes of the various frequency components in thevpuise
are shown in Fig. 4(c). As expected, the high-frequency components are
markedly lower in amplitude than the low-frequency components. The dispersion
relation is shown in Fig. 4(d), which is no longer a linear function of .

This curve is obtained from the experimental phase spectrum by scaling the
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ordinate with the length L. Figures 4(e) and 4(f) show the results
of the phase and group velocity computation for the frequency range 0 -,
10.0 MHz. Results for the spectral amplitudes beyond 10.0 MHz are not

dependable, as the amplitudes become negligibly small there.

The circular dots on the group velocity curve are obtained from the
m-phase technique. The extent of the dispersion can be readily

seen in the dispersion curve in Fig. 4(d).

As another demonstration of the application of the Fourier phase
analysis technique, we show its use in the analysis of a broadband pulse
propagating in a 76.4 cm length of 1.61 mm (OD) Remendur tubing. In this
case, both source and receiving transducers consisted of 280 turn coils of
#32 AWG wire wound on a section of glass tubing. The coils were slipped
over the ends of the Remendur tubing and a -50 volt pulse having a width
of about 1 usec was used as excitation. The incident pulse contains
frequency components from 150 to 500 KHz. The signal, received with a
second ceil placed over the other end of the tubing, is shown after 40 db
amplification in Fig. 5(a). The pulse has been shifted by 135.7 usec to
bring it on scale. In contrast to the previous example, the low frequency
components of the pulse in this case propagate faster than the high
frequency components. The amplitude spectrum normalized to the maximum
value is shown in Fig. 5(b), while in Fig. 5(c) are shown the derived

dispersion relation, phase and group velocities for this material.




VII. CONCLUSIONS

In this paper, it has been shown that the pulse phase spectrum de-
fines the dispersion relation of a linear causal medium, ana a phase
; spectral analysis of a dispersed pulse yields results for both phase and
group velocities of waves in dispersive media.

Most continuous-wave techniques require tedious frequency scanning

and data reauction. In contrast, the pulse analysis technique is rapid.

T

The technique appears not to be restricted to the analysis of elastic
pulses propagating in solids. It could well find application to studies of

the dispersion of acoustic or electro-magnetic waves in dispersive media.

TR T R
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Figure Captions

Figure 1. Hypothetical dispersion curve-frequency (f) versus number .
of waves in a length L(N). 3

Figure 2. Block diagram of the apparatus for measuring the phase
spectrum.

Figure 3. Pulse propagation, dispersion, phase and group velocities of
waves in 6061-T6 Aluminum
- (a) Input P- pulse in voltage (tg = 0.0 usec).
(b) Received P-pulse at L in voltage (rs = 2.6 usec).

(c) The amplitude spectrum of the received pulse (Relative
amplitude versus frequency f 1in mega hertz).

(d) The phase spectrum of the received pulse and the disper-
sion relation (wave number g in 1/cm versus frequency
f in mega hertz).

(e) Phase velocity v (cm/usec) versus frequency f
(mega hertz).

(f) Group velocity U (cm/usec) versus frequency f
(mega hertz).

Figure 4. Pulse propagation, dispersion, phase and group velocities of
waves in 96-ply boron-epoxy composite materials. (Shear wave

} propagating in the direction of the fibers)
(a) Input S-pulse in voltage (rs = 0.0 usec).
T (b) Received S-pulse at L in voltage (1g = 0.0 usec).

(c) The amplitude spectrum of the received pulse (Relative
amplitude versus frequency f 1in mega hertz).

(d) The phase spectrum of the received pulse and the disper-
sion relation (wave number g in 1/cm versus frequency
f in mega hertz).

‘ (e) Phase velocity v (cm/usec) versus frequency f (mega
hertz).

(f) Group velocity U (cm/usec) versus frequency f (mega
hertz).

Figure 5. Dispersion of a pulse in a Remendur Tubing of 1.61 mm outer
diameter

(a) Received extensional pulse at L in voltage (TS = 135.7 usec).

(b) The amplitude spectrum of the received pulse (relative
magnitude versus frequency f in mega hertz).

(c) Dispersion relation (wave number g 1in 1/cm versus frequency
in mega hertz), phase velocity v in cm/usec, and group
velocity U 1in cm/usec.
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ABSTRACT

A scattering matrix approach, that involves only the transition
matrix of a single obstacle, is proposed for studying the multiple
scattering of scalar waves in a medium (matrix) containing identical,
long, parallel, randomly distributed cylinders of arbitrary cross
section. The elastic properties of the cylinders are assumed to be
different from those of the matrix. A statistical approach in con-
Junction with Lex's "quasicrystalline" approximation is employed to
obtain eguations for the average amplitudes of the scattered and
exciting fields which may then be solved to yield the dispersion rela-
tions of the composite medium. Dynamic elastic properties of the
composite medium containing circular and elliptical cylinders are
found in the Rayleigh or low freguency limit. Numerical results dis-
playing phase velocity and damping effect of the composite medium

are presented for a wide range of frequencies.
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INTRODUCTION

The subject of multiple scattering of waves is of interest in
many fields of engineering and science. In acoustics, it has important
practical applications in studies of distribution of flaws in solids,
fiber reinforced composites, porous media, fog horn, underwater signal
transmissions ete. Ever since Rayleigh's analytical tfeatment of scat-
tering of waves by randomly distributed particles to study the color
of the skyl, diffraction and scettering of waves have been the subject
of extensive research. We cite here papers that are related to our
present analysis2-ll, in which additional references mzy be found. Most
of the available results are, however, confined to scatterers of simple
geometries like circular cylinder, sphere etc., and often at low freguencies.
A detailed analysis of multiple scattering of waves by»obstacles of
arbitrary shapes and over a wide range of frequencies is still lackigg.

In scattering theories, approximations are usually made &t a
very early stage for: (1) the geometry of the obstacle, (2) size of
the obstacle relative to the wavelength of elastic waves and (3} dis-
tribution of the obstacles in the medium. The approximatiéns with
respeét to geometry and size are related. If the obstacle is small
compared to the incident wavelength, it is not possible to 'see' exact
details of the obstacle and usually one is content to obtain the gross
scattering properties of the obstacle. This is the so called Rayleigh
limit or low frequency limit, and yields corrections to the solution
for point scatterers. As far as the distribution of the obstacles
is concerned one either has regular arrays of obstacles, or & random

distribution. In the latter case we employ a configurational averaging

P
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procedure. If the concentration of obstacles is smz2ll, i.e., they
are sparsely distributed we may employ a single scattering or first

Born approximation.

ax39h 596

Foldyz, L , Twersky , Waterman and Truell7 end Karl and

Keller8 have used a statistical approach to the multiple scattering

9 aﬂd Mal and Chatterjeelo have

of scalar waves. Recently, Bose and Mal
extended the statistical approach to study the séattering of elastic
waves by circular cylinders and obtained solutions in the Rayleigh
limit and under static loading, respectively. Dattall has stu@igd the
scattering of scalar waves by cylinders of elliptical cross section
using the method of matched asymptotic expansions in conjunction
with first Born approximation in the Rayleigh limit.

The objective of the last menticned papers (Refs.9, 10 and 11)
is to determine the dynamic characteristics of a medium reinférced by
cylindrical fibers. The same objective has also been pursued by many
authors using different theories and a review of the subject is given

by Achenbachle, Peckl3

and Moonlh. Generally, a dispersion rela-
tion_for plane waves in the composite medium is determined in these
papers, but seldom is a discussion of attenuation or damping of the
medium. In the Rayleigh limit, this may be due to the fact thet the
effective wave number in the composite medium is a real quantity,

and in the case of periodic layering, the periodic ﬁature of fibers and
the boundedness of the body in a direction normal to the wave vector
confines all the energy.

On the other hand, Sutherland and Lingle15

end Tauchert and
Guzelsu16 have observed appreciable damping in these materials and a

few experimental values have been given. However, they also stated that

o
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the attenuation measurements are difficult to meke for a wide range
of frequencies.

In this paper we apply a scattering matrix approach to multiple
scattering of horizontally polarized shear waves. Watermanl7 intro- é
duced the matrix method to study the response of a single obstacle |
to acoustic and electromagnetic waves. The matrix method has the

advantage of being applicable to obstacles of smooth but arbitrary shape

4 and also at wave-lengths comparazble to obstacle size. Peterson and

18

Storm have given formel expressions for the scettering matrix of a
distribution of obstacles but they are difficult to compute in practise.
We propose an alternate method which combines the scattering matrix of a

single obstacle and a suitable statistical averaging technigue. This

approach can be used conveniently to obtain explicit sclutions at the

Reyleigh limit, and to obtain the dispersion relation, phase velocity

é j : and attenuation constants of inhomogeneous media for a wide range of

frequencies.

We consider & homogeneous, isotropic infinitely extended solid
containing N number of indentical, long, parallel, randomly cdistributed
cylinders of arbitrary cross section. We essume that time harmonic plane
shear waves polarized parallel to the axis of the cylinders are incident
normal to the scatterers (SH waves). When N is very large, a statis-
tical analysis is presented using the scattering matrix formulation.

The statistically averaged eguations are then solved by Lax's "quasi-
crystalline" approximation to yield the propagation characteristics of
the "average waves" in the medium. Analytical results are obtained
for the wave speed, dispersion relation and effective elastic moduli

] ) of the composite in the Reyleigh limit, and they are shown to agree with
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the existing results. Numerical results are also presented for propagation

speeds and attenuations at higher frequencies.

Ii. TRANSITION MATRIX FORMULATION FOR MULTIPLE SCATTERING

We consider N arbitrary shaped, long and parallel cylindrical
scatterers with piecewise smooth boundery surface S embedded in an

infinitely extended solid (matrix) which are referred to a coordinate system

as shown in figure la. Oi and O, denote the centers of the ith and jth

J

inclusions and they can be represented by the polar coordinates Ty ei

and zi and rj, ej and zj, respectively. Let p, p be the density and
rigidity of the matrix and Pes He those of the scatters.
We represent an incident plane SH wave of unit amplitude, frequency

w and wave vector k by

i(ker-wt)
u = 0 , v = 0 , w =w = e 5 (1)

The wave is essumed to move along the positive x-direction, and thus k-r = kx.

In Eq. (1)

k = oe ; c = (ufp)t/ @ s (2)
s s

and u, v and w refer to the displacements in the x, y and 2z direc-
tions respectively. We use the superscript (0) to indicate an incident
wave, and cs its wave speed in the matrix.

When the wave impinges on the scatterers, part of the incident wave
is scattered back into the matrix and the rest is refracted into the
scatterer. The scattered wave will also be of SH~type. The displacement
component of the scattered wave is denoted by w = ws while that correspond-

ing to the refracted wave is denoted by w = wF. Since the incident wave
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has time dependence given by exp(-iwt), 211 field quantities will have
the same time factor which will be suppressed henceforth. The dis-

placement field wS and wF satisfy the following Helmholtz equations

(V2+k2)ws =RNORSe (\72+k§)wF = 0 (32,b)

where V2 = 82/3x2 + 32/3y2a and

ke = wle, 3 o5 = (1,11./.3:{.)1/2 s (L)
The index f pertains to the inclusion materisl. The problem at hand
reduces to computing the total displacement field at any point in
the metrix satisfying the appropriate boundary ccnditions on the sur-
face of the inclusions and radiation conditions at infinity.

The total displacement field at any point outside the scatterers
is the sum of the incident displacement field and the fields scattered

by 211 the scatterers. This may be written as

N .
w(r) = W)+ ) WEleor)) (5)

i=1

vhere wf(g—{i) is the field scattered by the i'" _scatterer to the
point of observation r. The field that excites or impinges on the

:th scatterer is the incident displacement wo plus the field scattered
from all the other obstacles. The term exciting field, wE, is used to

‘gu 8 betweern the field actually incident on & scatterer and

- ' jent Tield ‘C produced by sources at infinity. Thus,

Ly
'

th
. pity of the 1 scatterer, we write




S o

s s

N

r vo(r) + 2 w‘;’(z-zj) ;e s |rr| <2e (6)
J#i

H
~
n

where 'a' is the radius of the circle circumsecribing a scatterer
(see Fig. 1b). In the preceding formulation, we have assumed that the
intercylindrical spacing is such as to avoid any overlapping (no
interpentratién).
| The matrix formulation of scattering differs from the eigen-
function expansion technique in that the same basis set, for our
case the cylindrel wave functibns, may be used for scatterers of
any shape. We expand the exciting field and the scattered field in

terms of basis functions wn’ anda Fe wr,

) = D elRey (rry) (1)
n:-&
? 8y 4 S (
. v (r) L, 0 r-z4) (8)
n--—ﬂ
where
ing
¥, = Hn[klg—gil]e .
(9)
in¢i

Re y = Jn[klr-ril]e

are solutions of the Helmholtz equation, and &, and bn are undeter-
E: mined coefficients. In Eq. (9), ¢i refers to the angle that r-ry
: makes with the x-axis (see Fig. la) and Re ¥, refers to the regular

part of wn i.e., the part that is regular at the origin. For

™

E
t
|
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this choice of the basis set, regular part of wn is different from the
real part of wn.

It has been shown that if the total field outside a scatterer is the
sum of the incident and scattered fields, the unknown scattered field
coefficients can be related to the incident field coefficients through
the transiﬁion matrix (T-matrix)lT. We shall extend this definition to
the present context. Since (w? + w?) is the total field in the matrix

th

medium, the expansion coefficients of the field scattered by the J

scatterer may be formezlly related to the coefficients of the field exciting
th

“ the scatterer through the T-matrix:

':>'j = z 'I‘J afn 3 (10)

The elements of the T-matrix invelve surface integrals, which can be
evaluated in closed form for circular and spherical geometry; for
obstacles of arbitrary shape they can only be evaluated numerically.

The T-matrix for a single scatterer is of the form
o _ ok
T = -Re Q(Q ) (11)

where Re Q and Q are matrices which are functions 6f the surface S

of the scatterer and of the nature of the boundary conditions. A detailed
derivation of Eqs. (10) and (11) was given by WatermanlY- For the sake
of completeness, expressions for Q-matrix and the evaluation of the
T-matrix are presented in the Appendix A.

Substituting Eqs. (7) and (8) in Eq. (6) and using Eq. (10), we ob-

tain
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zali] Re wn('.g-z_'i) 0(r) + ZZZT a v, (r-r ) S ; (12)

n J#i a4 m

It can be seen that the series on the right hand side of Eq. (12) are
expressed with respect to the center of the jth scatterer. The addi-
tion theorem will be employed later to express these quantities with
respect to the center of the ith scatterer. It then remains to
expand the incident wave elso in the form of & series centered at the
th

1 scatterer. By employing Fourier series expansion in complex form,

the incident wave can be expanded as

0 n ey
v (r) = :E:i Re wn(g—gi) e * (13)

n

With Eq. (13), Eq. (12) can be written as

Sel re v (zr,) - z % Re v (r-r;) + zzz INCETBNELY

n J#i 2 m

In order to express the basis function wz(g—gj) in terms of Y, (r-r.),

we use the following addition theorem (see Fig. 2)

‘g im(6, ,-9.)
By(elr-r,De®™ = 3o (klrr, D By G ) e HE L)

After some simple manipulations and using Eq. (9), we can write Eé. (15) as

bty = (1P QP Re yler) ¥y (rr) . (16)
m

Substitution of Eq. (16) in Eq. (1k4) yields
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i IO p
Zan Re y (r-r,) = e Zl Re wp(x:-x:i)
P

n

(17)

2 ZZD g ‘j % g\ZyTy) Be v (rxr,)

J#éi L m

Multiplying both sides of Eqg. (17) by Re wt(g—gi) and using the orthogonality :

condition or the angular part ¢, Eg. (17) can be reduced to

ai = i Z ZZ( l)n”“ ‘j a ln(r I Yo {28)

J¥1 £ m

Thus, by employing the T-matrix, we have eliminated the unknown scattering

coefficients bn, resulting in an equation for an only. In view of
(10), it can be seen that the scattered field coefficient bn can

be obtained by multiplying Eq. (18) by the transition matrix T. The

3 Sj of all

coefficients an, or bn are functions of the coordinates r

the scatterers, although this is not written explicitly.

ITI. STATISTICALLY AVERAGED WAVE FIELDS

We now wish to average over the positions of all the scatterers.

We define a probability density of finding the first scatterer at r. and

<
the second scatterer at r2 and so forth by p(rl, r2, sl "N) The
probability density may be written as
P(I_'l, {2’ ceey EN) — P({'i) p(z_.l {2, -oo', coey ;Nl!i)

ri)
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where p({i) denotes the probability density of'finding a scatterer
8t 1, while p(g3|{i) denotes the conditional probebility of finding

a scatterer at Ej if a scatterer is known to be at - A prime in

b o8

the first of Eq. (19) means r; 1is ebsent while two primes in the

second of Eg. (19) means both Zi end r are absent.

J
If the scatterers are randomly distributed,'the positions of all
scatterers are equally probable within volume V, and hence its distri-

bution is uniform with probability density

p(r;) (20)
0 s {i £V

In addition, the assumption that the cylinders are non overlapping

suggests that

UV, gl > 2e
P(rjlri) = (21)
Y s l!i‘fjl < 2a

P I

where 'a' is the radius of the circumscribing circle, see Fig. 1. A

suitable correlation in the position of cylinders may also be added to
(21). The correlation is, however, omitted here for simplicity.

We denote the conditional expectetion of a statistical quantity

f as

= L}
<f o> j-... j.f p({l, Ty oee's legi) dr, dgz cee ary
v \'s

(22)

< f >i,j = f.., ff p({l, 1.'2, AL g e {Nllzj’ I_'i) dr d.rz, eonty !
\'s v
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In the first of Egs. (22) we have averaged over all scatterers

-
’i except the ith and in the second, over all except the ith and
E Jth, and so on.

E . Multiplying both sides of Eq. (18) by the probability density

given by (19) and using Egs. (20), (21) and (22), we obtain the con-

figurational average of &

N
iker >
g : Ler. 3 +9
< a; By = it e * s ¥ Z zz («1)° Tim f < afn >3 wi-n(zij) chgj (23)
2 m V!

where V' denotes the volume of the medium excluding the volume of
N

the cylinder of radius 2a. For identical scatterers, 3 can be
J#i

replaced by (N-1). Equation (21) can be rewritten as

: iker '
i Wb TRURE . Hed zz n+f f J ;
<e > =i e * 5 (-1) sz < e >ij wz-n({ij) dgj. (2k4)
: £ m A
Sauis;? L4 frors
o v TN

The above equation indicates that the conditional average with one

scatterer fixed is given in terms of the conditional average with two

}‘ scafterers fixed. This presents & difficulty in solving for the un-

known coefficient < an >. However, Laxh has suggested a quasicrystalline

approximation, i.e., ;

i3 . (25)

WY P YD TN

This approximation implies that there is no correlation between the

ith and Jth scatterers other than that there should be no inter-

A T E

penetration. With this approximation, Eq. (24) mey be written es

S
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we obtain

iKer, 1k-r iKer
o i PR N-1 ZZ o n+£ ;o f & =i
i"x e i * 5 (1) X e \bi_n(r1 )dgj.

2 m v
(28) i

Equation (28) may be rewritten as

iKer I
n =%i _ .n Ly N-l Zz 2n+t f Tij
i Xn e 1 ( 1) T(t+n)m ln& w 'l‘j) J

, (29)
The integral in Eq. (29) is a volume integral and the integrands

1 _.n 8% ja n+2 3
e s R S ZZ S f S8y 2 W (0yd 4,08
V'

This is a system of integral equations for the unknown coefficients
< a: % Similar expressions for < b: >i may be obtained by multiply- i

ing (26) by the T-matrix. x

IV. PROPAGATION CHARACTERISTICS OF THE AVERAGE WAVES IN THE MEDIUM

We now try a plane wave solution for the average < a > with an

effective wave number K characterizing the composite medium:

i I
<. % = 1 X e (27)
m
The averaged wave vector K is assumed to be parallel to that of the

incident wave, which in the present case is 2long the x-axis. In Eq.

(27), X~ is an unknown constant. Substituting Eq. (27) into Eq. (26),

e and wt({ij) satisfy the wave equation. Thus we can rewrite

the integral in the following form




ey

Gifacibice i

iKer

= f (P Hu el e e P ule e, (30)
Pkl | > 2a

~
o g WEyy Ly g
. 2K2f w‘c(rij)ar € * or wt(rlj)]ds
=k g -8 J

© 2a

where Green's theorem has been applied. S°° refers to a circle of large
radius at infinity while 82a refers to the surface of the circumscribed
circle of the scatterer.

Using the following plane wave expansion

iK(r ,cos6,-r.cos8. ) iné,
J 3 2 d i .n i
e = E i Jn(KriJ) e (31)

n==-w

the surface integral on 82a can be evaluated:

1 5 iKrjcoseJ iKrjcosej
Pz, e -e =y, (r,,) as
k2-K2 s e Ty arJ arJ =1
28
iKricosei Sua it ¢
=e -—2—-2—[2k Jt(ZKa)H,L(Eka)—QK Ht(eka)J%(2Ka)] (32)
k -K

To evaluate the surface integral on S_, we replace wt(gij) by its

asymptotic value. We note that when r,6 - o

J




r, = lgo-r,l o lr ] - L2
; i =i =3 J lrjl
: g (33)
1 il
—_— <> 0
Ty (%3] AR
and hence
. Cikrger o dkrg it
Vy(rgg) »1° e ';k";j- e e ‘ (34)

where e is the unit vector. Employing Egs. (33) and (34), the surface

integral on S mey be written as

iKr .cos6, iKr cosé6
e [[‘pt(r' )_3_e J e J Lwt(rij)] as

K2_K2 3 ~iJ 3rJ ’ arj
(35)
& -ikr, er, ikr, iKr iKr iky jte.
e ] I S R e Y e
k2__K2 . ‘Mkr‘j arj Z-)r‘j lﬂkrj J

In Eq. (29) there are two sets of terms each of which satisfies a

different wave equation and hence both can be equated separately to zero.

Thus the incident field term and the surface integral at infinity, which

Rt o St £ S aa

satisfy the wave equation with number k cancel each other. This is the
so called extinction theorem: the unperturbed incident wave is extinguished
within the medium by waves induced at the boundary of the system. The
remeining terms in Eq. (29) with Eq. (32) gives the relation for the un-

known conditional averaged amplitude:

| W 2n Mm=2
| N T 5 zz il % Tﬂ,m(JH!.-n) (36)
i L m

.de ..

J
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(finite), and

|

| where we have assumed that N and V are infinitely large with N/V =n
%
|

; ~ JH = 2kaJ, (2Ka)H', (2ka) - 2Ka K,  (2ka)J' (2Ke) . (37)

Similar equation can also be obtained from the average scattered field

coefficient < bn >, assuming a plane wave solution of the form

§ 2 iKricose:.L
: < 'bn TRt Yn'e (38)
? where Yn is an unknown constant.

In Eq. (36), the summation integers £ and m varies from -« to
. For numerical computations, these have to be expressed from 0 to .

This can be achieved by formulating certain properties of the T-matrix

vhich are outlined in the Appendix B. Using these properties in Eg. (36),

l we obtain
? 2mn 2 =, .%-m
i ¥ Nt i e
E 5 2 .2 ZZ i B sz(X +X-m)(JHR,-P +JHl—n)
K=K Lo -
E F =1 Le=
; (o] im e
+ sz(xm-x—m)(Jﬂl—n-mz +n) + ———(2)1 73 Tcm(Xm+X_m)JHn

% ;
6 e
* :E: (2)1/2 Tloxo(JHk-n+JH2+n) 4 Tooxomn (39)
i 2=1

where superscripts g and o refer to even and odd parts of T-matrix
elements (see Appendix B).

Equation (39) is & system of simultaneous linear homogeneous egquations

|
|

E

B

|

! Py’




for the unknown amplitudes Xn. For a nontrivial solution, we require
that the determinant of the coefflicients vanishes which yields

an equation for the effective wave number K in terms of k and

L

the T-matrix of the scatterer. This is the dispersion relation for
the composite medium. It can be shown that the above eguation is
similar to the one obtained by Bose and Ma19, for circular fibers,

if we substitute the T-matrix of a circular cylinder given in the Appen-

dix A. However, Egq. (39) is a general expression valid for any
arbitrary cross section. It may be noted that 22, the distance of
closest approach, coincides with the diameter of the circular cylinders.

The T-matrix is the only factor that contzins information about the exact

shape and nature of the cylinder. If the elements of the T-matrix are
known, the dispersion relation of a composite consisting of random

3 ' distribution of obstacles of arbitrary cross section can be obtained

either from Eq. (36) or Eaq. (39).

V. RAYLEIGH LIMIT

In the Rayleigh limit or low frequency limit, the size of scatterers
is considered to be small when compared to the incident wavelength. It
is then sufficient to take only the lowest order coefficienis in the ex-
pansion of the fields. Neglecting higher order terms in ka and Ka

in the expansion of Bessel and Hankel functions, Eq. (37) mey be reduced

to &

JE, % Z(E"-2a%(k° %) tnke) (39)

In this 1.mit, the elements of T-matrix are known in closed form for
various simple shapes see Ref. [19], and they are given here for the

F . : sake of completeness for circular and elliptical cylinders:

h-—-..-..—......._.ﬁ.____.._ e —




Circular cylinders

2 2[ 4-1 2 2

— ¢n ka] + 0(k a )

™ = (d—l)k

e o .o o dn (lam) 2.2 l-m .22 b 4
Tll = Tll e x“a"[1- e k"2 fn ka) + O(k'a ')
™ =0 ; T, = 0 for &, n>2

00 2 n 2 -

Elliptical cylinders

e T g=1 .2 : L)
= 4§ —(d~ +
T00 h(d 1)k abll- o k ab &n ka] o(k'a)
e 1 (1-m)(a+b) . 2 1 (1-m) 2
Tll 8 v k b[l e b -——=(a+b)k ab &n ka]*—O(k 2 )
o _ im (1-m)(a+b) 2 1 (1-m) 2 ) L L
’Tll " ey b[l figrrey 2=——2(a2+b)k"ab fn §§]+-o(k & ?
™® =0 T = 0 for %, n>2
00 2 &n L
where d = pf/p and m = vf/u and a and b are semi major and

<
minor axes of the elliptic cylinder, respectively.

In view of Eqs. (40) and (L41), we obtain the following simultaneous
linear homogeneous eguations from (39) for the unknown Xys X, and

X—l for thin cylindrical fibers

(ko)

(k1)

g e




T

e

21rn° o - o
Ry ™ g XoToo‘mo"xlT:L1JH1"X-1T11JH1}
21{1’1 X-l
= [e] e L e (o) B!
X, - {}\OTOOJHI-* 51Ty (FB,#IH )T, (JK-JH,) ]
X-l e o
+ -—2—[T11(JH2+JHO)-T11(JHO-JH2)]} (42)
Q“no e Xl e o
& —[ Y+T =
> 3 i {XOTOOJH1+ 1T (G +IE 4T (JH,-0H) ]
X-l e (o]
+T[Tll(JH2+JHO)—Tll(JH2—JHO)] g

From the determinant of the coefficients XO, Xl and X-l we obtain
the following dispersion relations:

Circular cylinders

"

£ - l——fﬁ_—n;-) 1+ 3By 1 ve(a-1) )
k -
1l+m

n

2
fop Al

: 2 .
2 2 l-m } 2(1+m)
2 =i - e N o =
k a *n ka {;+c l+‘} {}+c(d 1) o gl— ) 1+ c(d-1)

1+m

+

(43)

e

2
{l-c A=k {l-Qc(d-l)} - & 3-mm) 1+c(d-l)}

1+m 2 (l+m)2

1+4m

-g-(d—l)2 {}+c ;:E;} + O(khah)

where ¢ = nazno is the concentration of circular cylinders per unit area,
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Elliptical cylinders

e, 1 (1-m) (e+b)
;E 3 e (1-m)(a+b) [}+cl 2(mb+a) ][l*cl(d-l)]

€1 2(mb+a)

¢y (1-m)%(asb)?

r Gle
8a 2
(1-m)(e+b) (mb+
% ke fn kal' l4cy 2(2b+:.) } {l+cl(d-l)} e @ _’;)(24_,0; -1+cl(d.-l)

€1 2(mb+a)

c 2 2
+{l-—cl M} {l-2cl(d-l)} -1- -aig (1-n)" (e+b) (1+c, (a-1))

mb+a (mb+a)2
e (a+b) Lok :
=iy a(d-l) {e+e, (1-m)- =<} +0(ka’) (Lk)
where cl = Tab n, is the concentration of elliptical cylinders per
unit area.

If terms of order khahﬁn ke are neglected, it is .seen that Eq. (L3)
is the same as the one obtaired by Hashin and RosenZh and Bose and MalT.
For *he same order of approximation, it can be shown that Eg. (4k) agrees

with the results obtained by Dattag

for low concentration.

The value of K as determined by Egs. (L3) and (LL) is a real
quantity and relates to phase velocity vp of the composite medium given
by vp = w/K. To study the dependence of phase velocity on concentration
of fibers, we consider boron-aluminium composite with density ratio d =

2.53/2.72 and shear modulus ratio m = 25/3.87. Using these values in

Egs. (43) and (4k), we computed the phase velocity vp and results are

shown in Fig. (3) for various values of b/a where the phase velocity Vb

is normalized with respect to velocity of wave propagation g in the

matrix. The general tendency of the phase velocity is to increase with

b e i

E




-C-20 -

concentration. The results also indicate that as b/a decreases, the

phase velocity increases.
Defining an average shear modulus <u> = m2<p>/K2 where
<p> = cpf+(l-c)p is the average density, we find the effective shear

modulus of the composite medium:

<:> = i:ggi:ﬁ;;gi:ﬁg (circular cylinders)
: (45)
e l-cl(l—m)(a+b)/2(mb+a) e .
5 s 1+cl(l—m)(a+b)/2(mb+a) (elliptical cylinders)

VI DISPERSION AT HIGHER FREQUENCIES

To study the response of the composite at higher frequencies,
one has to consider higher powers of ka and this implies that e
larger number of terms (Xn) must be kept in the expansion of the average
field. This is best done numerically. Some model calculations are
présented for a aluminium matrix reinforced by boron fibers of ellipticel

cross section. The material properties used are p = 2.72, pu = 3.87,

Pe = 2.53, and pe = 25.

For values of ka ranging from 0.05 to 3.0, the determinant of
the coefficients of Xn was computed numerically retaining 13 simul-
taneous, homogeneous complex eguations for X_6...XO...X6. The elements
of the T-matrix were computed as explained in Ref. (17). The complex
determinant of the coefficients was calculaeted using the Gaussian
elimination process with partial pivoting. For a given value of ka,
the roots of the determinant were searched in the complex K-plane
(K1+i K2) using Muller's method. Good initial guesses were provided
by Eq. (LK) at low values of ka and these could be used systematically

to obtain quick convergence of roots at increasingly higher values of

ka. The real part Kl determines the phase velocity vP while the
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imaginary part X, determines damping or attenuation. The results of these

2
calculations for various values of b/a and c¢ eare ploted in Figs. L-9.

In Figs. 4-6, the average phase velocity in the composite narmalized 1
by the phase velocity in the matrix material is plotted versus ka for
b/a = 0.4, 0.6, 0.8 and 1.0 and for c¢ = 0.3, 0.5 and 0.7. We observe
that vp/cs = k/Kl. For b/a = 1.0, these results agree qualitatively

5

with those obtained by Sutherland and Lingle1 for tungsten-aluminum

composite, Ting and Sachse2u for boron-epoxy composites and Yew and
Jogi21 for steel-PLM-k composites. The phase velocity increases very

slightly at low freguencies and then decreases very gradually with

increasing frequency. For lower values of b/a, the phase velocity
increases much more rapidly at low freqpencies and then tapers off
gradually to almost the same values as for b/a = 1.0. It may be noted
that our results indicate thet the phase velocity is much higher for
smaller values of b/a at low frequencies. This effect is more pro-
nounced at higher concentrations where the velocity also drops more
sharply with increasing frequency.

In Figs. T-9, we have plotted the coefficient of attenuation «
versus ka. We chose to define o as o = La KE/Kl so that it is
dimensionless. These results appear to be new, since explicit results
for the attenuation of waves in composites is lacking in theoretical
calculations and as discussed in Refs. 15 and 16, too difficult to
measure experimentally. However, the results presented in Figs. T-9 agree
qualitatively with those predicted by Sutherland and Linglels. The at-
tenuation increases rapdily at first with increasing frequency (up to
ka ~ 0.5) and then decreases to almost zero at high frequencies. There
is a tendency for the attenuetion to increase rapidly again with freguency.

This can be observed clearly in Fig. 7 for ¢ = 0.3. In these results,




R e L

E’
|
|

-C-22-

the behavior is qualitatively the same for different values of b/a, although
the increase and decrease in o becomes more pronounced with decreasing b/a.

The general behavior of the a versus ka curves indicates the
possibility of existance of higher modes of vibration in the composite,
or what is referred to in the experimental work in Ref. [15] as the
higher pass bands. Although Figs. 4-6 seem to indicate that there is
only one phase velocity in the -composite for each value of frequency,
this is really not so because at higher freguencies, there exists many
values of K for a given ka. These multiple roots are, however,
difficult to obtain in our root searching z2lgorithm. These highér
roots simply indicate that at higher frequencies, the effect of the
individual fibers become more apparant and the composite behaves less
and less like a continuum.

The frequency at which o Dbegins to decrease is usually referred
to as the cut off frequency of the first pass band. It must be noted
that the attenuation is due to only geometric dispersion or scattering
and no energy is dissipated in the medium. At the cut off frequency,

a decreases because energy begins to pass into the second>pass band.
Our results seem to indicate that the onset of the second pass band is
quite rapid at low values of ¢ as indicated by the rapid decrease
of a« to 0 for b/a =1.0, whereas for higher values of ¢ the

5

onset is more prolonged. Sutherland and Lingle and Moon and Mow22
offer a similar explanation from their models. It should be mentioned
here that our results are accurate for low concentrations because of
the Lax's quasicrystalline approximation employed in the analysis
which neglects the cbrrelation between the fibers.

There are a number of improvements that we can make to the model

composite chosen here. The random distribution of fibers may be

ki ccne o a 4 o ’ pevs e

fi
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replaced by regular arrays of fibers since this is true in practice, and
also the effect of correlation between fibers must be taken into account

3 and Sve23,

especially at high concentrations. As observered by Peckl
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